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Abstract 
 

Weapon system confidence is being able to 
predict the system’s performance to within a 
quantified uncertainty (confidence interval).  
Properly planned test and evaluation of the system 
allows for models and simulations to be built to 
predict system performance with confidence. As 
confidence is important to strategic offensive 
weapons, it is equally important for defense against 
strategic warheads.  Steps for building in confidence 
start with specifying the top-level family of systems 
performance evaluation requirements in terms of 
confidence.   These are then “flowed down” to lower 
level system/subsystem performance requirements 
(confidence) using force on force level simulations. 
Test programs (test size, instrumentation quality) and 
analysis methodologies are then designed to meet 
each lower level requirement. Such a process 
provides for tradeoffs to be made while quantifying 
the implications of decisions to test more, or less, to 
instrument different functions or systems, or to 
changing the quality of the instrumentation. The 
fundamental feature of this test and evaluation 
process is to build models with associated confidence 
for the family of systems from which credible 
performance predictions can be made with quantified 
confidence intervals. This will allow for optimum 
planning for placement and usage of assets before the 
action commences as well as optimum real-time 
threat response. However, a number of “grand” 
technical challenges must be faced in order to 
optimally build in confidence to the ballistic missile 
defense family of systems. 
  
Introduction 
 
 The national command recognized that not 
understanding how well our strategic deterrent 
(offensive) systems would perform (i.e., with 
quantified confidence) would be unacceptable.  
Therefore they set specific guidelines for test and 
evaluation of these systems, IDA/WSEG (1966)1.   
Analogous guidelines are not generally applied to 

                                                 
1 These guidelines have evolved; the most recent 
version is US Strategic Command (1998). 

tactical systems.  The consequences of not knowing 
how well our strategic defensive systems will 
perform are at least as disastrous as they would have 
been for our deterrent systems.  Therefore equivalent 
or more comprehensive guidelines should be 
promulgated for defense against strategic warheads.  
We need to credibly predict the operational 
performance of our deployed BMD systems.  This is 
not just  “how well will they will perform?” but “how 
confident are we in our prediction?”  
 
 Quantified confidence in performance 
assessments played a significant role in the 
development, testing and maintenance of the Trident 
II Weapon System; it should play an even more 
critical role for high value strategic defense systems 
such as Theatre Missile Defense (TMD) and National 
Missile Defense (NMD). Quantified confidence is 
knowing the system’s performance to within a 
quantified uncertainty (confidence interval).  It is 
statistically knowing what you don’t know about the 
system performance.  Building a weapon system with 
a good performance estimate (e.g. high reliability) 
but with a large confidence interval (high 
uncertainty) about that estimate could be disastrous! 
 

Our missile defense systems must protect 
our troops and/or homeland against nuclear and/or 
biochemical warhead missiles (e.g., from major 
national conflicts, rogue nation, or terrorist attacks).  
Our systems must work the first time!  The US public 
will not allow for any disasters.  We must prevent the 
threat from holding the US public and government 
hostage in peace negotiations (This could happen if 
we suspect our system is not as good as planned.).  
Military planners and US policy makers need 
quantified confidence in the weapon systems 
performance estimates.  It focuses attention to critical 
problems/subsystems where more testing could be 
applied.  It provides the necessary information for 
optimization in the use of weapon assets for real-time 
response to a threat or for defense planning.  High 
confidence provides high assurance for policy 
negotiations and high deterrence to potential 
adversaries.  The question is not,  “Can we afford to 
build in confidence?”  but,  “Can we afford not to 
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build confidence?”  The cost increment to accomplish 
this is minimal. 
 

Fundamental concepts of confidence in 
ballistic missile defense (BMD) system performance 
prediction are presented.  Then an example in TMD 
will be summarized to illustrate the need for 
confidence based evaluation and prediction.  Next, 
the actual application of confidence based methods to 
the test and evaluation of the Trident II Weapon 
System will demonstrate how it has been successfully 
done.  Finally, an outline of a proposed approach for 
missile defense coupled with a discussion of the new 
technical challenges this presents is given.   
 
Confidence in BMD Performance Prediction 
 
 The top level Measure of Effectiveness 
(MOE) for BMD is probability of negation, nP , (or 
protection effectiveness).  It is related to lower level 
system and subsystem parameters such as accuracy, 
reliability, time delays and many others. These are 
statistical parameters that are conceptually based on 
identically repeated trials of the family of systems 
(FoS) campaign scenario.  As the number of trials 
gets large, estimates of these parameters converge to 
their true fixed values.  For example, the 

estimator, nP̂ , which equals the ratio of number of 
successful kills to the total number of threats, 
converges to the true underlying nP .  The parameters 
are “fixed but unknown” but our estimates of these 
parameters based on limited trials (testing) will be 
stochastic in nature with their distributions, being 
defined by the estimator forms, the quality of the 
instrumentation and the number of trials.  The 
estimator distributions describe our uncertainty about 
the truth with confidence bounds (or intervals) being 
specific expressions of that uncertainty.  Since some 
of the higher-level MOEs are not practically testable, 
e.g. many-on-many FoS performance at the theatre 
level, system evaluators must use simulation models 
to project FoS performance from lower level testable 
parameter distributions to the theatre level. 
 
 An example of the estimation distribution 
for nP  is shown in Figure 1, which is a binomial 
density function with its maximum near the true 

value. nP̂  is estimated from a specific test program.   
Conceptually, if the test program is repeated many 
times, randomness in the system and instrumentation 

would produce the distribution of nP̂  about the fixed 

value of nP .  As the number of tests in the test 

program increases, the nP̂  distribution gets more 

concentrated about the true nP .  An evaluation 
requirement might be to choose a test program such 
that 0.190LCBPn �� .  In reality, since the nP  
for a specific campaign scenario is not directly 
testable, model simulations must be used to project 

nP̂  from lower level MOE estimates and their 
distributions.  These may not necessarily look like the 
sampling density of Figure 1. 
 

 
 The overall concept of test program derived 
performance estimates and associated estimated 
distributions, allowing confidences to be estimated, is 
shown in Figure 2.  Essentially, the sources of data 
provide modeling information to the system evaluator 
who constructs performance (e.g. accuracy, reliability  
 

 
and timeline) estimates and associated distribution 
estimates.  The test derived estimates and 
distributions are sampled for a Monte Carlo 

0 0.2 0.4 0.6 0.8 1
nP̂

Probability density of nP̂ nP

90% Lower Confidence Bound:
Prob[      > 90LCB]=0.9nP̂
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engagement scenario simulation, which transforms 

them into the top level MOE estimate, nP̂ , and 
associated distribution.  The construction of the 
performance estimates from the multiple sources of 
test data is not straight forward, requiring advanced 
system modeling techniques.     
 
Importance of Confidence in a TMD Example 
 

A companion paper in this conference, 
Mitchell et.al. (2001), provides an example of the 
importance of confidence in TMD.  Starting with 
assumed estimates (called expected values in the 
paper) and associated distributions for accuracy, 
reliability and timelines, the Extended Air Defense 
Simulation (EADSIM) was used in a Monte Carlo 
mode, as illustrated in Figure 2, to evaluate a 
fictitious theatre engagement scenario.  It was found 
that the variations in the sampled distributions could 
sometimes cause the FoS to perform radically 
different than predicted by just the projection of the 
assumed estimates.  In other words, the reasonably 
possible statistical variations in the associated lower 
level distributions caused significant tails (and even 

multiple modes) in the nP̂ distribution.  So it is 
possible that one could have predicted a reasonably 

high nP̂  with the true value being significantly 
lower, a potentially disastrous result!  Again, a 
properly constructed test program must be developed 
so as to achieve sufficiently close confidence bounds 
to the truth.    
 
Confidence in Trident II Accuracy Prediction 
 
 Goals for Trident II accuracy evaluation 
were specified in IDA/WSEG (1966) and the 
evaluation requirements were specifically defined in 
US Strategic Command (1998).  The requirements 
specified quantified confidence goals for top-level 
MOE estimates of reliability and accuracy for initial 
performance estimates and change detection with 
time.  For brevity, only accuracy evaluation will be 
described. 
 

The process followed very closely the steps 
outlined in the next section except it was applied to 
the MOE of target accuracy.  An overview 
description is given in Simkins et.al. (1990). New 
evaluation methodology  (a satellite missile tracking 
system and maximum likelihood system 
identification for modeling) was developed to 
minimize system tests with greater functionality.  
Thirty system tests were needed using the traditional 
(“shoot and score”) evaluation approach with only 

ten tests needed with the new methodology for initial 
model estimation.  Ten tests were needed using 
traditional evaluation to four tests using the new 
methodology for detection of model changes in 
follow-on testing.  Only the new methodology 
enabled extrapolation to untested conditions.   
Individual guidance error models and launch area 
gravity models were corrected.  Increased system 
understanding was obtained to accurately predict 
performance over long-range non-tested trajectories. 
The estimated Trident II performance was 
considerably different than was expected.  This 
would not have been known or understood with the 
traditional approach. This has enabled test-based 
predictions of capability to support other (non-
traditional) missions & requirements. 
   
Conceptual Application to T&E of BMD 
 

The systems engineering approach to test 
and evaluation of BMD with confidence is shown in 
Figure 3.  This was extrapolated from experience 
with many previous weapons systems T&E and 
especially that of Trident II.  The left side illustrates 
the planning steps required to properly design an 
overall test program to provide adequate prediction 
confidence at certain milestones in the test program.   
 

The key starting point is specifying the top 
level Performance Evaluation Requirements (not how  
well the weapon system should perform, but how 
well should we know it) in terms of required 
specifications (e.g. negation probabilities for realistic  
overall force level scenarios).  At present, there does 
not appear to be “official” evaluation requirements on 
how well we must know nP  as there is for Trident II 
accuracy and reliability. This will be a serious 
impediment to successful employment of the BMD 
system.  A few test successes does not guarantee that 
the system will meet its objectives; it only shows that 
success is possible.  
 

If there is no top level MOE evaluation 
requirement in terms of confidence, then one must be 
developed.  This would be an iterative process 
between developer, evaluator, and the military user.  
Questions to answer would be:  What are the 
“required” performance values (e.g. negation 
probabilities) for realistic overall force level 
scenarios?  How well do we need to know them? (i.e. 
width of the 90% confidence bounds?).   

 
The next step is to determine a complete set 

of lower level Measures of Performance (MOPs) with 
associated confidence requirements over a reference  
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set of force level scenarios needed to achieve the 
required MOE & confidence bound.  Testable MOPs  
(or ones that are extrapolated from tests) are sampled 
and force level simulations are used to flow up the 
MOPs (and confidences bounds) to the MOE (and 
confidence bounds).  This process is iterated until an 
optimized set of MOPs (and confidence bounds) is 
achieved.  The optimization criteria might be to 
“balance” the contributions of each MOP confidence 
contribution to MOE confidence.  Other criteria 
might reflect the difficulty (e.g. cost) in achieving 
certain MOP confidence such as reliability.  Many 
tradeoffs could be evaluated. 
 
 A test program and analysis methodology is 
then designed to meet each MOP confidence 
requirement by hypothesizing various feasible tests 
(system, sub-system, component), test sizes, 
instrumentation quality, and evaluation 
methodologies. Appropriate simulation models 
(covariance or Monte Carlo) are used to evaluate 
each hypothesized set until an optimized set is 
obtained.  The results of this phase might require 
going back to the previous phase to revise the 
required MOP confidence bounds.  
 
  Such a process provides for tradeoffs to be 
made while quantifying the implications of decisions 
to test more, or less, to instrument different functions 
or systems, or to changing the quality of the 
instruments.  As defense spending and costs 
associated with system development, test and 
evaluation come under increasing scrutiny, it 
becomes even more important to be able to quantify 
the relative benefits of test size and instrumentation 
quality.  Quantifying the confidence with which we 
will know system performance provides a metric by  
which we can assess the value of our test programs, 
instrumentation and analysis approaches. 

 
 The right hand side of Figure 3 describes the 
execution steps in the test and evaluation process.  
Tests could be conducted by traditional testers and 
evaluators, but with the evaluation outputs complying 
with the system evaluator’s requirements.  Test types 
could include system, components or subsystem tests, 
monitoring of an in-place system as it awaits 
operational usage, and subsystems tested in-the-loop 
of a simulation.  Per test fault detection/isolation 
would be conducted by traditional tester/evaluators, 
but with results validated by the system evaluator.  
Isolated faults would be fixed by the developer and 
removed from the data base and models.   
 

The system evaluator would calculate a 
cumulative update of the MOP models, confidence 
intervals and estimated distributions.  Use of physics 
based models, where possible, to fit data (system 
identification) from diverse tests would be used to 
gain maximum information from each test. If the 
model can be broken down to a set of parameters that 
are independent of scenario, then statistical leverage 
can be gained by accumulating across all relevant but 
disparate tests.  This process for accuracy is 
described in Levy (1996).  The associated uncertainty 
(confidence bound) in the model estimates is 
calculated from the known observability, 
instrumentation quality, and number of tests.  Prior 
information and tests from development testing (DT) 
could also be used in the beginning until an adequate 
number of post deployment tests could be 
accumulated.  Periodic reassessment of the test 
program adequacy to estimate the MOPs and 
associated confidences may require feedback to the 
planning stages to reassess the confidence 
requirements.   
 

MOE specification with
confidence requirements 

MOE modeling flow 
down to detailed MOPs & 
confidence requirements

Design test 
program & analysis 

methodology Conduct tests, process data, 
detect/isolate per test faults 

Predict MOE  & confidence 
over required scenarios,
Force Level Evaluations

Cumulative update of MOP 
models  & confidence 

Fix faults 

Performance ReportsRequirements & Constraints

Other tests,
Prior Information

Planning Execution

Figure 3 - Conceptual Approach to Test and Evaluation with Confidence
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Next, the system evaluator predicts the 
MOE and confidence bounds for the required 
reference set of scenarios, using the force level 
simulations to flow up the MOPs (and confidences 
bounds) to MOE (and confidence bounds).   He 
conducts model fault isolation to determine which 
MOP is out of specification and its resultant 
contribution to the MOE.  Periodic reassessment of 
the test program adequacy for current MOE 
requirements must be done.   
  

Finally, the system evaluator conducts Force 
Level Evaluations with latest estimated models by 
using force level simulations to flow up the estimated 
MOPs (and confidences bounds) to MOE (and 
confidence bounds) to evaluate the adequacy of the 
systems for many different campaigns.  This allows 
trade offs to be made for optimum planning of the 
BMD FoS deployment, as is illustrated in Mitchell 
et.al. (2001). He also develops and updates a 
functionalized performance prediction model to be 
used in the real-time employment of the BMD 
response to an operational threat. 
 

A number of “grand” technical challenges 
must be faced in order to optimally build in 
confidence to the BMD FoS.  The specter of limited 
testing will force heavy reliance on more “physics 
based” models to optimally extract the maximum 
information from each test.  System, subsystem, and 
potentially lower level testing will have to be 
combined.  Reliability modeling may have to be 
revised.  Methodologies for semi-automatically 
optimizing the test programs design and optimally 
combining the diverse types of testing will be needed.  
 

Model Estimation vs. Model Validation 
Note that this process provides an 

“estimated” model from the test data, which is 
distinct from a “validated” model.   Model validation 
is focused on how well the model predicts the real 
world over a limited set of test points (hopefully, but 
not usually, the intended use of the system).  A 
hypothesis test is conducted on the test data to 
invalidate the model.  Confidence in the model at the 
test points is not transferable to non-tested 
conditions.  Model estimation directly estimates the 
model parameters from the test data.  A  “physics 
based” model (with scenario independent parameters) 
is fit directly to all relevant test data (system, 
subsystem, etc.) for statistical leveraging.  The 
computed error statistics of the scenario independent 
model parameters indicate which part of model is 
poorly known and allows tradeoffs in instrumentation 
type, quality, and test sizing to meet system 
evaluation requirements.  Most importantly, the 

parameter estimates and the error statistics can be 
transferred to any non-testable MOE estimate (via 
engagement scenario simulations) for confidence 
bound predictions.   
 
Conclusions 
 

The effectiveness of our deployed BMD FoS 
needs to be assured.  Confidence based model 
building from T&E is the key for credibly predicting 
performance.  The process starts with proper 
performance evaluation requirements (confidence) to 
define the test program and analysis methodologies.  
Estimated models, with confidence, are developed 
from testing.  These models, with confidence, are 
extrapolated to operational, untested conditions with 
confidence.  This allows for optimum planning for 
placement and usage of assets before the action 
commences as well as optimum real-time threat 
response. 
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